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Abstract—This paper presents a mathematical model for the coupling between moisture diffusion
and damage in fiber-reinforced, polymeric composites. In these materials, moisture was observed
to cause damage by a multitude of minute debondings at the fiber-matrix interfaces. The model
employs concepts of continuum damage theory to describe those debondings. Formal evolutionary
expressions are derived and related to the extent of damage, the stress field, moisture content and
moisture gradient. The effects of damage on moisture diffusion and on reductions in moduli are
also formulated. Qualitative comparisons with experimental results are provided.

NOTATION
A reference surface
Ay a generic symmetric second rank tensor
B,-B, damage and moisture dependent coefficients
Cpor Cpq damage and moisture dependent moduli
damagc quantity, dlz“]_.dlzlzl
Dypg, components of skew-symmetric damage tensor in reference configuration
hin components of skew-symmetric damage tensor in deformed configuration
Ex, Lagrangian strains
€ljus €11k alternator tensor
F, flux of vapor mass in reference configuration
/i flux of vapor mass in deformed configuration
G, temperature gradients in reference configuration
9 temperature gradients in deformed configuration
H,-H, coefficients in transversely isotropic vector valued functions
k vapor’s enthalpy in equilibrium reservoir
hi-h, coefflicients in skew-symmetric tensor valued functions
I~1y, transversely isotropic invariants
m vapor mass content
PPy, coefficients in transversely isotropic vector valued functions
p vapor pressure in equilibrium reservoir
0. heat flux vector in reference configuration
q heat flux in deformed configuration
r—ri coefficients in skew-symmetric tensor vajued functions
Tiij affinities to rate of damage growth
Sk components of symmetric Kirchhoff stress
s entropy density of solid-vapor mixture per unit solid mass
§ entropy density of vapor in equilibrium reservoir
T temperature
u energy density of solid—vapor mixture per unit solid mass
i internal cnergy density of vapor in equilibrium reservoir
T components of transversely isotropic vector valued functions
14 reference volume
Vi a generic vector
v; velocity of solid particles
Wia a generic skew-symmetric tensor
X, position vector in reference configuration
X; position vector in deformed configuration
Z, moisture gradient in reference configuration
2 moisture gradient in deformed configuration.
Greek symbols
g ‘_-f‘ damage and moisture-dependent coefficients
1 13
& infinitesimal strains
Xia components of a transversely isotropic, skew-symmetric tensor valued function
i chemical potential of vapor in equilibrium reservoir
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Ha chemical potential of ambient vapor

p vapor density in equilibrium reservoir

Pe density of solid mass in deformed configuration

a, Cauchy stress

¢ Gibbs free energy

Diin Puig components of rate of damage growth in deformed and reference configuration

Helmholz free energy

1. INTRODUCTION

It is well known that in many materials deformation under loads is associated with the
formation of a multitude of internal flaws. These flaws, which may be microvoids, micro-
cracks or microcrazes, precede the development of macrocracks which cause final failure.
The above-mentioned flaws can be caused by environmental agents such as moisture and
temperature, in addition to mechanical loads.

In the many circumstances where microflaws are distributed in a statistically homo-
geneous manner it is advantageous to represent them as internal state variables and employ
thermodynamic considerations to establish constitutive relations and evolutionary
expressions for flaw growth[l, 2]. This approach is employed by several *“‘continuum dam-
age” models which were reviewed recently by Krajcinovic[3]. Guided by various physical
and mathematical considerations, the internal state variables were chosen as scalars, vectors,
and tensors of various ranks. The case of a vector valued internal state variable was
employed by Talreja[4, 5] to model damage in fiber-reinforced, composite laminates and
relate stiffness reductions to external loads. More recently, a revision in the interpretation
of “damage” as microcrack areas led to the selection of internal state variables as axial
vectors (or, equivalently, as skew-symmetric tensors)[6]. This choice will also be employed
in the present work.

Since the present investigation aims specifically at fibrous composites, where damage
forms in characteristic patterns, the existence of a “‘representative damaged cell” is assumed.
The components of the axial vector which represents “damage” are then defined as the
projections of the total area of microcracks contained within the cell on its *“walls”. When
those projections are divided by the respective areas of the cell’s walls the measure of
damage is nondimensional. The representation of all the microcracks within a cell by a
single axial vector certainly obscures the distinction between a few “large” microcracks and
many smaller microcracks. However, in circumstances when damage forms in consistent
patterns such a distinction may not be important because the variability in microcrack sizes
is likely to be limited. The interactions between microcracks within the cell will certainly
depend on the external loads. It will be shown that the present model accounts for this
dependence through stress-related damage evolution relations.

With few exceptions(7], most existing continuum damage formulations employ linear-
ization in the damage parameters. By contrast, the present formulation does not involve
series expansions in the damage parameter and is not limited to “‘small” damage.

In the presence of sharp gradients of temperature or moisture content, the expansional
strains may be highly nonuniform within the characteristic damaged cell. In this case the
stresses are likely to vary even along each of the individual microcracks, resulting in elevated
stress-intensity factors at the microcrack tips. Within the context of a continuum damage
theory these increases in stress intensity are reflected in gradient-dependent damage evol-
ution relations. Such relations are also considered in this paper.

The effects of moisture in polymeric composites were investigated over more than a
decade. A comprehensive review which appeared recently[8] listed more than 300 references
on the subject. Damage due to moisture, which developed as debondings at the fiber-matrix
interfaces, was observed by several investigators{9-17). This typical form of moisture-
induced damage was attributed to the presence of hygrophilic chemical agents at the fibers’
surfaces[9). Since the epoxy may act as a semi-permeable membrane, the high concentrations
of moisture result in excessive osmotic pressures at the interfaces, leading to fiber-matrix
debondings.
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In another study[18] it was shown that epoxy resins absorbed excessive contents of
moisture when the amount of curing agent in the mixture was below stoichiometry. Since
it is plausible to assume that the stoichiometry of the resin would change in the vicinity of
the fiber interfaces it is conceivable that the interphase regions contain excessive levels of
moisture, which cause interfacial cracking.

The process of moisture sorption is associated with a thermodynamically *“open”
system, since vapor mass is being added to the material volume of the composite. This
process will be accommodated in this paper by considering a hypothetical vapor reservoir
which is in thermodynamic equilibrium with the actual vapor contained in a material
volume-element of the composite.

This approach follows the ideas employed by Biot[19-21] in connection with flow
through porous media. It should be pointed out that in spite of the similarity between Biot’s
approach and the present formulation the two are not identical. The natural internal
variable in Biot’s scheme is the pore pressure, while in the present work it is more suitable
to employ moisture content, or alternately the chemical potential. The subtle differences
between the two formulations were pointed out by Gurtin[22].

2. BASIC EQUATIONS

Consider a solid body B occupying a material volume ¥ bounded by a surface 4. Let
the solid, of mass density p,, absorb vapor through its boundary and let m denote the vapor
mass per unit volume of the solid. Also, let x be the position of a solid mass particle in the
deformed configuration that corresponds to the place X in the undeformed state, and let f,
q and v denote fluxes of vapor mass and of heat, and the velocity of the solid particles,
respectively.

In addition, let # and s be the internal energy and entropy densities of the solid—vapor
mixture per unit solid mass, and let o;; and T denote the components of the Cauchy stress
and temperature, respectively.

A proper accounting of the state of the solid/vapor mixture, which is a thermo-
dynamically open system, is obtained by considering each element in thermodynamic
equilibrium with a reservoir containing vapor at pressure j, density g, and internal energy
and entropy densities # and §, respectively[20, 23, 24].

Conservation of the solid and vapor masscs gives

ps+pV-v=0 (H
= —~V-f. @)

Conservation of energy over B reads

E’j‘ psi dV= J. O';jn}‘vi dA'_J‘ q,~n,~ dA_J‘ ﬁ
dt Jy 4 4 4

The third integral on the right-hand side of eqn (3) expresses the mechanical power
due to vapor flux, observing that f;/§ corresponds to vapor velocity.* The last integral in
eqn (3) expresses the rate of vapor-borne energy.

The entropy inequality reads

ol

" n; dA——J ifin; dA. 3
A

ij‘ pss dV 2 j —(@/Tn; dA-—J §fin; d4 4
de jy Ja A

where the last integral in eqn (4) expresses the rate of vapor-borne entropy.
Application of Green’s theorem to eqns (3) and (4), and using eqn (2), yields
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psu = aijve‘.j"'q;,i'”g,if;' + hr (5
and
p IS 2 —q,;+(qi/T) g~ T3, f;+ Tsm (6)

where i = (p/p)+ i is the cnthalpy of the vapor in the hypothetical reservoir and g, = T,.
Elimination of g;; between eqns (5) and (6) yields the following expression for the
“reduced entropy inequality”

—pY—psT+ 00— (g T) g+ im—fii —5g.f; 2 0. @)

In inequality (7) ¢ = u— Ts is the Helmholz free energy and ji = A— T§is the chemical
potential of the vapor in the hypothetical reservoir.

3. DISTRIBUTED DAMAGE

When materials possess a statistically homogeneous microstructure, their mechanical
response is associated with the creation and growth of a multitude of internal flaws. For
several types of material microstructure these microflaws develop in characteristic patterns,
until they finally coalesce to form a localized, dominant crack whose growth leads to
ultimate failure. Some characteristic damage patterns are shown in Figs 1 and 2 for fibrous
composite laminates of different lay-ups[2S5, 26]. Patterned damage was also observed in
concrete and in ceramic materials.

In the above-mentioned circumstances it is possible to relate the distributed flaws to a
characteristic material *‘cell” and express the damage by means of a continuous, internal
state variable[27]. Such cells are overlaid on the damage patterns in Figs 1 and 2.

For damage due to microcracking, the internal state variable can be selected to rep-
resent the projections of all microcrack surfaces on the “walls” of the characteristic cell.
Since areas are expressed as vector products of directed line-segments, the present choice
leads to a mathematical representation of ““‘damage” as a skew-symmetric, second rank
tensor d;;;. The quantity d;;; may be viewed as nondimensional, since it can be formed by
dividing all projected microcrack areas through the respective areas of the cell walls.

In the presence of hygrothermal eflects, diffusion and damage phenomena are likely
to depend on gradients of moisture content dm/dx; and of the temperature 67/8x,. Upon
consideration of the above-mentioned characteristic cell it is possible to relate the latter
dependencies to non-dimensional gradients dm/0¢; and 8T/0&,, where &, = x,/L, (no sum on
i), with L, being the lengths of the cell sides[27].

Finally, it should be noted that each microcrack is contained within two equal and
opposite surfaces. Consequently, the constitutive formulation which employs d;; as an
internal state variable should remain insensitive to the sign of 4;;;.

4. ELASTIC RESPONSE WITH DISTRIBUTED DAMAGE

Consider the response of elastic materials with distributed internal damage. In addition,
let the material be exposed to thermal effects and absorb moisture from the ambient
environment.

In these circumstances the list of internal state variables contains the deformation
gradients F, = 0x,/0X,, ‘“‘damage” d;;, moisture m, temperature T and the gradients
z; = 0ji/0x; and g, = 0T/dx, of the chemical potential i and of T. As noted earlier, both
gradients and d};; may be viewed as nondimensional, while F, is obviously dimensionless.
In addition, 7 and j can be nondimensionalized as well by dividing their actual values
through some reference levels.

Considerations of frame indifference and employment of the reduced entropy
inequality[28] give
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Fig. 1. A radiograph showing the pattern of matrix cracks in a [0, 90, +45]); graphite/epoxy
laminate[26). The “characteristic-damage cell”” is superimposed.
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Fig. 2. A radiograph showing the pattern of matrix cracking in a [0, 90,]s graphite/epoxy
laminate[25]. The ““characteristic-damage cell” is superimposed.
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¥ = Y*(Exw, Dipgyym, T) 8)
§=- %wT‘* (%a)
i = p, ?7: (9b)
S = 2220 (50
and
Bifi+9:(q/T+3f)+rysdun <0 (10)

where = u— T’ is the Helmholz free energy, Ex, = 3(FixF,, —0x,) are the Lagrangian
strain components, S, are the components of the symmetric Kirchhoff stress[29], D5, are
the components of the damage variable dj;; referred to the undeformed configuration. Since
both d;;; and Dypp, are areas they are related by

d[ij] = JXL,kekjieLPQD[PQ] an
with J = det dx,/0X.

In addition, in eqn (10), ry;; is the “affinity” to the rate of damage growth ¢, = d;;,
namely

a *
Fia = psa%m. (12)

Furthermore, we obtain the following forms for the fluxes

QA = Q:(EKL’D[PQth’ ZBa Ty m) (13a)
F, = F}(Ex.,Dipg), G, Z5, T, m) (13b)
d’[u) = O, (Exr, Dipgy, Goy Z, T, m). (13¢)

In eqns (13) @4, F,, and @, are components of heat and moisture flux and of rate of
damage growth in the reference coordinates X,. They are related to ¢; and f; through
Q4= X449, Fi= X4, f; and @, is expressible in terms of ¢ in the same manner as given
in eqn (11) for Dy, and dj;;. In addition G, and Z, are gradients referred to the undeformed
configuration, namely G = X, cg; and Zy = x; 2,[7).

To simplify the subsequent formulation we shall restrict ourselves to isothermal con-
ditions. In this case g, = 0, whereby

F,= FA(EKL’ D[ng, Zg,m;Ty) (14a)
and

Oy = d)[lJ](EKLaD[PQ]’st m; Ty). (14b)
In addition, inequality (10) reduces to

Aifi+rigduy < 0. (15)
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5. FIBER-REINFORCED MATERIALS. TRANSVERSE 1SOTROPY

Consider unidirectionally reinforced fibrous materials. Such substances are transversely
isotropic about, say, the x;-axis and, in the absence of any right-handed or left-handed
internal structure, possess also reflective symmetries in the x,- and x;-axes.t

To derive the detailed dependencies of ¥, F, and ¥y, on Ey,, Dipp; and Zp it is
necessary to form al) the transversely isotropic invariants among these variables[30].

The complete list is given in the Appendix, where 4,;, W,; and V, denote a symmetric
second rank tensor, a skew-symmetric second rank tensor, and a vector, respectively.

Notc that the Appendix lists 33 invariants. However, the 13 invariants 7, /,,, {5, I 4
Dy, 13y, Iny, 1y4, Do, 139, Do, 1o, Iy, are odd in W,; and therefore inadmissible to represent
damage that must remain insensitive to the sign of dj;;. This lcaves 20 invariants for
expressing F, and @y, as explained in the sequel.}

In view of eqn (8), the free energy ¥ depends only on Ey, and Djpg,. Consequently, the
scalar ¢ depends only on the ten invariants .-/, Iy, 1,4, 1,5, I,y and I,,.1

Expressions for F, are obtained by considering the integrity basis for one symmetric and
one skew-symmetric second rank tensor and ¢wo vectors under T-4 symmetry, subsequently
retaining only those terms which are linear in the second vector[31, 32]. The results of this
procedure are listed in the Appendix, where the components of the vector valued function
U: u,, u, uy are related to those of 4,;, W;; and V,. The 32 terms P,—P,,, H,—H, in the
expressions for (u;,u,) and u, are functions of the 20 invariants I,—1s, I.—1,g, I,7-114, 16,
Iy, Iyg, Iy, Iys, I3, I3 and I35 formed among A4;;, W and V..

In view of the fact that the flux components F, must remain insensitive to the sign of
the damage variable d};;, it is necessary to discard all terms odd in W,;, hence P3 = P =
Py=Py=P,=P3=P4=Ps=P,=Py=Pyy=Pyp=Hy=H;=Hs=Hg=0.
This leaves only 16 terms out of the original list of 32 terms P\~P,,, H,—H,.

Expressions for @y, are obtained by considering the integrity basis for one symmetric
second rank tensor, one vector and two skew-symmetric second rank tensors under T-4
symmetry, then retaining only those terms which are linear in the second skew-symmetric
tensor. In this manner a list of terms is generated, which contains products of components
of 4;;, W;; and V; with one component of the second skew-symmetric tensor, say Y. At
this stage generate a second list of terms by transposing the indices m and n, namely by
forming scalar components of transposed terms among A4, W,; and V, that correspond to
)

The desired skew-symmetric tensor valued functions are then obtained by subtracting
the factors that multiply Y, from those which multiply Y,.,.

The results of this procedure are given in the Appendix, where ¥31), X;32 and x;, are
related to components of 4;;, W,;; and V. The 18 terms r,-r,4, #—h, in the Appendix are
functions of the same 20 invariants [,~Is, I.—1,g, I,2=1\4, 116, 117, 19, 132, 126, I35, I5; and
15, that enter P,, P,, etc. Note that the process of transposition from Y, to Y, and
subsequent subtraction automatically eliminates all terms odd in W;; from the list for y,,
hence no further reduction is necessary to account for sign insensitivity to the damage
parameter 4y, ;.

6. INFINITESIMAL DEFORMATIONS. STRAIN FORMULATION

Consider infinitesimal deformations. In this case £}, — ¢;;, Sk, = 0u, F1 = fis Djuwy =
dmmy and p; = py, (constant).
Expanding the free energy in powers of ¢;;, truncating after the second power, we get

Pso¥ = Yo+ Bress+ P26 +822)+ B3[D(e) ) —€52) +4d31)d[32612]
+ﬂ4d[lzx(831d[321—'632‘1[311)+}’15§3+?2(8x1+€22)2
+y3[D(e 1| —£22) +4d)3 ydyp3 961,

t These combined symmetries are denoted by the class T-4 in Ref. [30}.
1 See, however, Addendum.
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+Y4d{2! 21(33151132}”83261{311)2 +7s€31{es +e22)
+7e€33[D(e11) —€22) +4d)3 143581 2]
+y1€33d (631430 — €32d)31y)
+ys(er+€22) [D(e1; —€22) +4d)3yd) 35812
Fyoler) + o) diy ey 1d — 32d)51y)
+7y10lD(ery —822)+4d{3nd{azlgz2}d{121(53\dzszi‘%2“’[311)
+ynl(en —€22)* +4e12] +712(63, +£32)
+Y13dm1[(£n —&237) (831d{321+332d{311)*‘2512(831d(3n—8320'(321)] (16)t

where Yo, B; (i=1,...,4), % (/ = 1,...,13) are functions of m, d, +d}z., dfi2, and T,.
A]SO D= d[23”—d[232\.

Stress-strain relations are obtainable from o;; = p,,(0Y¥/C¢;;), where &;; is considered
independent of ¢;. Consequently, it is necessary to express all shear strains ¢;; (i # j) in eqn
(16) by (¢;;+¢;). Upon performing this modification, and then employing the “truncated”
notation, with ¢,, > 06, 64, 03, G339 03, 03304, C3, =05, 620, and &;, - &,
£33 = E3, £33 = €3, 2823 —> £4, 263, = &5, and 2g,, — &, we obtain

0, = Cpo+Coe,t where C,, =C,,. amn
In egn (17), we have
Cio=B2+B3D, Ciyo=f2—PsD, Cso=8,

Cio = —iBsdindiny,  Cso = 1B4diindp,
Coo = 2B3di311d 139

and
Cii =2(0247:D*+9D+y11),  Cra=2(2=71:D% =),
Cyy = ps+yeD, Cis = H(—=v9—116D+y13)d 231,
Cis = (s +7i0D+7113)d0adisz, Cio = 223D +75)d3ndisa,
Ca2 = 2(r2+73D* —ysD+711), Cyy =75—76D,
Cu= %("‘)’9+?;oD—?13)d[12}d{3na Cys = %(?9"?toD’*Yn)dm}d{sz},

=7
Cie = 2(—27,D +y5)d;3d32, Csy =2y, Cyy = "“z“ldlﬂldﬂll’

Cys = %_deldm), Cag = 2y6di3d1325 Cau= 74d121 21‘1[2311"“%7'!2’

Y13
Cys = *)’sdgzzzxdxmdpz}- Ca = -?xod{zﬂldmidm} + 7dﬂ2ldi33h

Y Y
Css = '}’4“’{212141;2321 + *Es Cse = (?:odéz} - “ég)dm]d(m,

Coo = 2(473dfsydisn+711).
Note that when all d;; vanish the stress-strain relations reduce to the familiar

t See Addendum.
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expressions for transverse isotropy about the x;-axis. However, in the presence of damage
the stiffness matrix C,, contains all 21 components, all of which depend on dj;;. Obviously,
all stiffness components may depend also on m and T,.

For ¢; « 1 we neglect all terms that involve the symmetric second rank tensor in the
Appendix and obtain the following expressions for the vector that represents the moisture
flux f:

fi =Pz + Pol(dhy —dis)z, +2di3d352,)
fi= P122+P6[—(d[zzu“d[2321)22+2d[3ud132121] (18)
Sy = Hzy+ H,d 5(dj32, — djsnzy)

In eqns (18) P,, P, H, and H, are functions of the 20 invariants I\—1Is, I:—1q, I,7-1 4,
L, 1,5, 1o, I3, L6, g, I, and I; formed from the components of the symmetric tensor
&, the skew-symmetric tensor dj;; and the vector z,. Obviously P,, P, H, and H, may
depend also on m and on the (constant) temperature T,.

Recall, however, that basic considerations of irreversible thermodynamics—as derived
from the kinetic theory of gases—require that all coefficients in the flux—force relationships
for transport terms should depend only on equilibrium state variables[33]. If this require-
ment were to be extended to solids as well then P,, P¢, H, and H, in eqns (18) cannot
depend on moisture gradients and hence can at most be functions of the ten invariants /-
I, 1o, 1,3, 114, 114, and I,

Note that the expansion of i in a power series of ¢;; does NOT imply that an analogous
expansion must exist for P,, P, H, and H,. The present formulation therefore retains the
option to consider non-linear coupling between mechanical fields and moisture flux[34].

Finally, employing similar arguments, we obtain the following expressions for the
damage growth rates ¢; = dj;:

47[121 = hldm]+h4(d[31122—‘d[32121)23
G131 = Nidpy+ra(et = 2)d g+ 22(21dpsy — 23d)1 )]
+ridugdisnziza+ris(dngzs —diyzi)z (19)
P13y = ridpy+ral— (21— 2)djg + 21 (22d31 — 23d)21)
—ridpadiyziza—rildngzs —dpyz2)zy.
In eqns (19), the terms h,, Ay, ry, r4, ry; and ryy are functions of the same invariants
as P,, P,, H,, and H, above. Note that the terms A, and r, correspond to “self similar”

damage growth, while the remaining functions A, ry, 7, and r,; are associated with the
“tilting” of microdamage due to gradients of the chemical potential.

7. INFINITESIMAL DEFORMATION. STRESS FORMULATION
Define the Gibbs free energy ¢(c;;, dyijy, m; To) by

Pso® = pso¥ —Gij€ij. (20)

Then, in analogy with eqns (9) we have

0
& = —Psoa—fj (21a)
ij
s= —-?2 (21b)

oT
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_ o9

= po=. 22
H Pso 0”1 ( )

The “reduced entropy inequality”, eqn (10), remains unchanged, except that now

d¢
rig = Pso@- (23)

Consider a characteristic material stress, e.g. a failure siress o, then for sufficiently
small stresses (such that g,;/0; « 1) we can expand ¢ in powers of ¢,; and truncate after the
second powers. This expansion has the same form as eqn (16), except that g;; replaces ¢;;,
expansional coefficients (— B)) replace B;, and compliances (—#,) replace the stiffness y;. An
analogous procedure yields linear strain—stress relations similar to those given in eqn (17)

€ = Spo+ 85404 (24)

with S, and S,, the same as C,, and C,, except that B, and 7, appear in place of §; and y,.
In addition, expressions (18) and (19) also remain unchanged, except that P,, P¢, H,, H,
hi, hs, r, re, 1y and ry 3 depend on 20 invariants that contain g;; in place of ¢;;.

In view of eqn (22), the chemical potential /i is given by

. op o¢, 0B, (Q) %(‘ﬂl‘*‘%:)

=P T om T om o) om o;

aB3 0i1—0; (2
2]

0B o o
o) o]

+ higher-order terms in (0;;/0y). (25)

For constant stresses the fluxes z; = 0/i/0x; are given by

(32({) 6m (324) ( ad[:“] ad“z])
z; = Pso[m K + 2am 6(d‘23,1+d(232]) d[IH] axi + d[32] ]

In view of eqn (25), z; will depend on

52¢0 62¢0 62¢0
amz i om a(d[231]+d(232]), amadlzlzl,

and on

0*B; 9B, 8*B;

om*’ oma(dhy+dhy)’ dmodh,y
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Fig. 3. The geometry of a unidirectionally reinforced coupon, with fibers in the x-direction, diffusion
in the x,-direction and load in the x,-direction.

(i=1,...,4) as well as on terms like

o8y oD
om 5xi’ec'

In view of the dependence of P, Ps,...,r; in eqns (19) on g;; it follows that d;;; may
introduce a non-linear stress effect on z,. However, for sufficiently short times—when d;;;
remain relatively small—it is plausible to expect that for g;;/0; « 1, z; will be linear in ;.

8. A SPECIAL SUB CASE: UNIDIRECTIONAL DIFFUSION UNDER A CONSTANT TRANSVERSE
LOAD

Consider a unidirectionally reinforced plate of thickness A, with fibers parallel to the
xs-axis, subjected to a constant stress g,, = g, with diffusion in the x,-direction, as shown
in Fig. 3.

In view of the observation that most damage due to moisture occurs at the fiber—matrix
interfacest[9, 16, 17, 35] assume dj,, = 0. Furthermore, assume gradients only in the x -
direction. Then, by eqn (26), z, = z; = 0.

In these circumstances eqn (24) gives

g = S,'0+S,-20'0 (l = 1,2, 3, 6), while g =E5s = 0.
In addition, eqns (18), (19), (25) and (26) yield :

damage growth rates
bz = rld[32]“"4zlzd[32] (27a)
ooy = ’1d[31)+742fd[311; (27b)

1 See aiso Fig. 8.



Fig. 4. Average moisture content as a function of ,/time in AS4/3502 graphite/epoxy coupons
subjected to various stress levels during absorption (97% relative humidity and 40°C).

Fig. 5. Maximum moisture content obtained in absorption as a function of the applied stress for
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In the present circumstances ry, rq, P, and P¢ in egns (27) and (28) depend on the
following six terms: {0, df+dpap, 21, 00D, aoz?, z} D} as well as on m. The quantities
¢o, B;, and B in eqn (29a) depend on df;+djy and on m.

In eqns (28) and (29) and the above D = d},,—djy as before.

In view of eqns (28) and (29b) the process of moisture transport involves a
moisture, stress and damage affected diffusivity. Perhaps more significantly, the terms
d(d{+dpy)/0x, and dD/8x, in eqn (29b) indicate that sorption is influenced by damage
gradients which “channel” moisture in the direction of increasing damage. Equations (29)
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tion (M, is the maximum absorbed content) vs \/time in unidirectional AS4/3502 graphite/epoxy

coupons showing the hysteresis loops at various stress levels. Loads applied transversely to fiber

direction. Absorption at 97% relative humidity, desorption at 0% relative humidity (all tests at a
temperature of 40°C).

T Recall, however, the qualifying statement following eqn (18).
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Fig. 8. A scanning clectron microscope photograph, showing typical debondings at the fiber-matrix
interfaces duc to moisturc in AS4/3502 graphite/cpoxy compositc.
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Fig. 9. Profuse microcracking. with some crack coalescence. in an initially saturated. Fig. 10. Microcrack coalescence in an initially dry, unidirectional AS4/3502,
unidirectional AS4/3502, graphite/epoxy laminate exposed to three cycles of 65 and graphite/epoxy laminate exposed to nine cycles of 0 and 95% relative humidity at
95% relative humidity, at 24-day intervals. Photograph taken after the third exposure 24-day intervals.

to 65% relative humidity.
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indicate that i depends linearly on stress and that such linear dependence is likely to occur
also for the diffusivity, at least for early stages of damage development.
The boundary condition on moisture content is determined by

Alxy = +h/2,1) = pu (30)

where p, is the chemical potential of the ambient vapor. For small concentration levels it
is plausible to assume that 7 is linearly related to m, whereby eqn (29a) predicts saturation
levels which, at least for early stages of damage growth, depend linearly on the stress o,.

An experimental investigation of stress-assisted diffusion in AS4/3502 graphite/epoxy
coupons was concluded recently[36]. Unidirectionally reinforced specimens were exposed
to a constant relative humidity of 97%, at a temperature of 40°C, and loaded transversely
to the fiber directions at 0, 15, 30, and 45% of the ultimate stress (where o ~ 7500 psi ~ 51.7
MPa). Total moisture weight-gains were recorded periodically in several replicate specimens
and results for the average values are shown in Fig. 4. Note the *“‘sigmoidal” shape of all
absorption curves, which differs qualitatively from predictions of classical diffusion and
indicates a non-linear, concentration-dependent transport process.

The dependence of the maximal moisture content and of the diffusivity on stress are
shown in Figs 5 and 6. It can be seen that an approximately linear relationship exists
between stress and both of the above quantities, as inferred by the present model.

Moisture weight-losses were measured during desorption at all the above stress levels.
These measurements were performed after removing all test coupons from the humid
chambers into a dry environment at 0% relative humidity. The resulting weight losses are
plotted vs /¢ in Fig. 7, where the weight-gain data are superimposed for each stress level
for the purpose of comparison. Note the substantial hysteresis loops, which can be attributed
either to the concentration dependence of the transport process or to the growth of damage,
or to both.

9. MOISTURE INDUCED DAMAGE IN THE ABSENCE OF EXTERNAL STRESS

Consider an unstressed unidirectionally reinforced plate, of thickness 4 as before with
all fibers parallel to the x;-axis and moisture diffusion in the x,-direction. In this case eqns
(27) and (28) remain unchanged, except that r,, r, P, and P, depend only on dj )+ d}y,
m (and possibly z3).

Equations (29) reduce to

. 0
A= (31a)

and

- ¢, ?’_"_ 9’ o(dhy+dhy)
6m2 (9x, 6ma(d[23,]+d[232]) ax, )

2y

(31b)

In view of eqns (27) and (31b) it is clear that damage growth rate depends on the extent
of existing damage and that this rate may also depend on moisture content and the
magnitude of the moisture gradient. A dependence of ¢;;; on dj;; would lead to a synergistic
effect which accentuates damage localization (‘‘damage breeds upon itself””). A dependence
of @, upon |8m/dx;| would tend to localize the damage in places of highest moisture
gradients, namely near the boundaries x, = +A/2.

The typical form of moisture induced damage is shown in Fig. 8. Note the “damage”
occurs as debondings at the fiber-matrix interfaces. Initially, these debondings appear as
isolated interfacial crescents. Upon repeated absorption/desorption cycles these crescents
grow, until they coalesce to create highly localized damage in the form of continuous cracks.
Typical forms of such cracks are shown in Figs 9 and 10[37, 38].
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during cyclic exposure to 0 and 95% relative humidities at 130°F, with cycle interval of 9 days.

The growth of damage can be inferred also from weight-gain and curvature measure-
ments in anti-symmetric, cross-ply composite plates[17, 39]. Due to the anti-symmetry of
the lay-up, these plates deform into saddle shaped surfaces upon cool-down from the
elevated cure temperature, with initial curvatures k, = —k, = k,. Upon subsequent
exposure to moisture, these curvatures vary with time, whereby k = k(). The variation of
k;—k(¢) vs time is shown in Figs 11 and 12, where experimental results are compared against
theoretical predictions of linear elasticity and linear viscoelasticity. (In those figures 4
denotes plate thickness and in Fig. 11 ¢, denotes the time required to saturate initially dry
plates, prior to their exposure to cyclic ambient humidities.)

The variation of the total moisture content M vs time in the anti-symmetric cross-ply
plates is shown in Figs 13 and 14. Weight-gain data points are shown in comparison with
predictions of classical diffusion theory (“Fick’s law™).

Inspection of Figs 11-14 shows increasing departures between data and theoretical
computations. These departures are most likely attributable to the presence and growth of
damage, which was not incorporated into the theoretical analyses and predictions of Refs
{17, 39]. The growth and location of damage in the anti-symmetric plates, in relation to the
moisture-exposure history, is sketched in Fig. 15.

The experimental observations exhibited in Figs 8-14, as well as in Figs 4, 5 and 7,
support qualitatively the general trends of the damage theory developed in this paper.

10. CONCLUSIONS

A continuum damage model was developed for a unidirectionally reinforced, poly-
meric-resin composite that absorbs moisture from a humid ambient environment. Damage
was interpreted as the total cross-sectional area of microcracks that occur within a charac-
teristic material cell prior to the formation of a dominant crack. The total microcracked
area was nondimensionalized through division by the respective areas of the cell’s walls and
was represented by a skew-symmetric, second rank, tensor valued, internal state variable.

Moisture ingress into the composite was treated in the context of the thermodynamics
of open system and coupled moisture, stress and damage relations were derived from
fundamental principles of thermodynamics and continuum mechanics. These relations
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Damage Progression

(a) Saturation } (b) Saturated (c) Fluctuating

and Dried Humidity

Fig. 15. A sketch of damage progression in a [0/90/0,/90,/0/90}; AS4/3502 graphite/epoxy laminate
with exposure to moisture. Shown at each stage are damage patterns that developed in addition to
previous damage.

included formal expressions for the evolution of damage, for stress-and-damage-coupled
diffusion, as well as for damage-dependent material compliances.

It was shown that experimental observations of moisture-induced damage, and of
moisture absorption and desorption in the presence and absence of stress, tended to verify
some of the salient aspects featured in the continuum damage model proposed in this work.

The present work did not provide explicit expressions for the evolution of damage or
any of the other formal relations. This deficiency is due to the paucity in data that are
available at the present time. Specifically, while several hypotheses for the prime causes of
moisture-induced debondings at fiber—matrix interfaces have been proposed (see, e.g. Ref.
[38]), the exact mechanism is not yet clear and cannot be modelled by fracture mechanics.
Furthermore, observations of moisture-induced damage are still scarce and inconclusive.
Like all fatigue and damage phenomena they exhibit extensive variation and scatter. A
larger data base for damage and a basic physio-chemical understanding of the debonding
process are necessary for further progress in this subject.
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APPENDIX: TRANSVERSE ISOTROPY, T-4 SYMMETRY (ABOUT X,-AXIS)

Case of one symmetric tensor A, one anti-symmetric tensor W,;, and one vector V,

(1) Invariants

Li=Ay, L=A,+4y, I= (A4, —45) 144}, L= A5 +4%, L= Wi+ Wi,

ly=AyZWy+ AWy, L=VitVi, L=V L =W,
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(2) Vector-valued functions

uy =PV +P,[(4,) = A}V +24,,V ]+ Py(A5, Wy~ A, W3V,

-

P, A3, — 43, 243,43,
T Py || A3 Wy — Ay Wy | Vi + A Wi+ AWy | Va +|:p. Wi,
el wi-wi, 205, W,
[Py ] 24,4, P HEV EN
H Py A=A Ay W+ A, W, |- 240 Ay Wy =AWy, V2
LP\2 ] Wy, W, Wi—-Wwh
+P iA1= A2)V =241V (A3 Wiy~ A3 W3 )+ Prl(A1 — A}V, =24,V )W,
[P ] A3 - 4% 245,45
H P (Wil 4, Wy~ Ay, Wy, | Vam AWy + A, Wy, |V
[Py ] Wi—-Wwi, 2W5 Wy,

[Py { [An:l [An]} [on] [An]
+ Vi<(A, ~A +24 + V.
_Pw] 13 (A1 —A2) W, 2l gy P |V,
[P, As, Ay
+_Pu] VJWn{(Au—Azz)I:Wn:l-ZAlz[W“:'}

Uy = PVt Pol— (A —An)Vi+ 241,V ]~ Py(Ay Wiy — Ay W3,V

[P, A3, - 43, 24,45 P[4
HPs T[4 Wy =AWy, [Vat AW+ AWy, |V +[p‘:| V’[W,;
Py wi-wh W W
[P 245,45, A3~ 43,
=| P [§A = A2)) Ay Wiy 4 A, Wy, |~ 240 Ay Wi =AWy, [t V)
L P12 W5\ W, wi-wih

P A
’} V,[ "]+P,W.,V,

+Pul(A) ~ ARV +24 2V (A3 Wiy — Ay Wa )+ Prl(A ) — AV, + 24, VoW,



Coupied damage and moisture-transport in fiber-reinforced, polymeric composites 1025

Py, Ay Ay,
- 14%:4 An - . :
| Py ] 3 u{( 1 Azz)[W“ +24,; Wi,

-”2] i A,HV|+A32Vz:}

uy=H,V,+
’ o | Hy JL W5, Vi 4+ WiV,

H,

W V,+ WiV,

(3) Skew-symmetric tensor valued functions
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ADDENDUM

The following oversight was noted upon reading of proofs, which is corrected below.
Although the invariants /g, 7,,, I3, and I;; are odd in the skew-symmetric tensor W, their squares and
products, namely 72, I3, I3, I3y, Ty Today, Loy, 11y, 1112y and Iy, 05, can be used in i as well as in PP,

H|-H9.

For the infinitesimal deformation case in Section 6 it is necessary to consider the contributions of 12, I3, and

114, whercby the following terms should be added to eqn (16):

}’14(83:‘1(311+532‘«§321)2+7’!54;2: 2][(31 I ‘822}‘43!}‘1;321—842012‘*%1{53:“’{31)‘?332‘%323)‘4:2}{(8: ' —S:z)dgsx}dm;—f-upi-
Consequently, the following terms should be added to the expressions for C,,

Ch= 2’)’lsdnzld,
Cis= %’}’ndisud,
Cre = ~ y1odyyd,
Cu= {y,,dﬁ,z],
Cys= Jz')’ud(zsn,
where in the above d = d},5d;3,,4,32.

Cip= =2y15d:24,
Cio= —¥1sdyDd,
Cas = = dydyyd,
Ces= ﬁudm)d(snv
Cyp= — ’17174151]‘1(1210,

Cu= %7‘|7dm]d

Cay =2y 56 nd

Cie = Yrsdnz)Dd

Cus = — {11934 12D
Cos = {'ytsdlle]Dz

The expressions for S, in eqn (24) undergo an analogous modification.



